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A CASCADE—GENERAL-MOMENTUM THEORY OF OFERATION OF A
| SUPERSONIC PROPELIER ANNULUS

By Bernard B. Klawans and Arthur W. Vogeley
SUMMARY

A cascade—general-momentum theory method for calculating the
operating conditions of a supersonic propeller annulus throughout the
flight Mach number range is presented. The introduction of an infinite
two-dimensional supersonic cascade as the method of power absorption
permits the consideration of such effects as drag due to 1ift and thick-
ness, shock interference, and solidity and appears useful in studying
general trends of supersonic propeller operation. For simplicity in
this presentation, sections with zero thickness armd drag due to 1lift
only are considered. - '

General flow patterns about the cascade and adjustments to free-
stream conditions are discussed. Representative subsonic, transonic,
and supersonic solutlons are given.

INTRODUCTION

The simple compressible axlal-momentum theory of reference 1 was
derived in an attempt to develop a rationsl compressible-flow propeller
theory, Solutions to the flow equations as presented in reference 1
thaet were acceptable from physical considerations were not found whenever
the stream Mach number was greater than 1.0 or whenever power loading in
excess of the amount required to induce an inflow Mach number of 1.0 was
used. Because the simple momentum theory is not concerned with details
of flow about the actusl propeller blade, this difficulty could not be
resolved. ' .

In this paper. the actuator disk is replaced by ah infinite casscade
representing an annulus of a supersonic propeller. By mesns of this
substitution, a satisfactory physical plcture of the flow phenomena is
obtained. ' e ' T '

IERERTED
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The purpose.of this -paper is to present the bassic considerations
and general method of c¢alculastion of the cescade—general-momentum theory
together with representative solutions in the transonic forward-speed
renge. As an incidental result, a logical method of extending the simple
momentum theory 1s also indicated. o . ) N o

SYMBOIS
B number of blades B -
b blade chord, ft
b propeller diameter, ft. R _
F force oriblade elemént, Ib/unit radial diétance
J ' ‘advance ratio, Vo/nD
M Mach number
m mess flow, slugs/sec/unit radial distance
n rotational speed, rps
P power, ftflb/aec/unit radial distance or hp/unit radial distance
Pe povwer-disk loading coefficient, __1_=_§:L_

PoVo3/ 2

P : static pressure, lb/sq ft
Q torque, ft-1b/unit radiel distance
r . radius to a blade element, ft
s blade spacing, b/o, ft
T . thrust, 1b/unit radial distance
U translational velocity of cascade, ft/sec
v velocity, ft/sec
W flow velocity relative to cascade, ft/sec
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X
L.E. plene of blade leading edges in cascade
T.E. plane of blade trailling edges in cascade
P/s power loading, hp/unit frontal area
0 initial stream conditions
3 final weke conditions )
1,2 slipstream locations of reference 1, correspond in present
theory to L.E. and T.E., respectively
@ angle of a'E:tack, Bc - PR, deg
8 blade angle, deg -
Y ratio of specific heats, 1.k
1 efficiency .
p density, slugs/cu £t
o solidity, %
@ angle between relative velocity W and YZ-plane
X,Y,2 ‘coordinate axes
Subscripts:
a axial
c cascade
R local flow condition at blade L.E. relative to cascadq
R local flow condition at blade T.E. relative to cascade
.
t tangential, transverse
b-4 propeller radial station at x
IR average condition along blade leading edges

fraction of propeller tip redius, 2r/D
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IE average condition along blade frailing edges ~ ' ' Lo
0 free stream o = S e
3 final wske e

DEVELOPMENT OF THEORY

General Considerations

The cascade—genersl-momentum theary developed hereln differs from
the simple axisl-momentum theory of reference 1 in two important aspects
as follows: (a) The actuator disk concept is replaced by an infinite
two-dimensional cascade, and. (b) the flow velocity has significant
components in .the tangential direction; thus, slipstream rotation 1s o
permitted. = e L o

The two-dimensional cascade is generated as shown in figure 1 where
the span of the airféils 1s taken to be unity in the radial direction
and t?e distance . S -.between airfoilé (measured from leading edge)

s- b/o. : :

The cascade may now be introduced into the idealized flow pattern
as shown in figure 2 where the mean redius of the flow pattern is assumed
constant. In this figure the reference axes are defined as follows:

X flight direction
Y * . direction of rotation =
z radial direction

The bounded region in figure 2 is described -in the following manner:

- (a) The "ends" of the region at stations 0 and 3 are composed of o
planes normal to the f£flight direction. T oo

(b} Between stations O and L.E., the "sides" of the region are
composed of parallel planes passing through the leading ‘edges of two
adjacent airfoils and extending forward in the flight direction. Because
of the infinite extent of the generated cascade in the Y-~direction, the
net forces acting on and the net change in momentum acroes these bound-
sries become Zero and need not be considered .in the mathematicel treatment.

(¢) Between stations T.E. and 3, the "sides ' ere similerly composed ,
of parsllel planes. - : SRR et R T T s e
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(d4) Between stations L.E. and T.E., the "sides" are composed of the
upper surface of one airfoil and the- lower surface of the adjacent air-
foll. The forces on these surfaces represent the total force acting on
each airfoil.

(e) Between stations L.E. and T.E , the "top" and "bottom" sare
composed of parallel planes separated by a unit radial distance.

(f) Between stetlons O and L.E. and T.E. and 3, the "top" and
"hottom" are composed of surfaces which are not necessarily parallel
but may converge or diverge in order for the flow to adjust to free-
stream pressure.

In the region between stations L.E. and T.E., the problem conalsts
only of the Plow within an infinite two-dimensional cascade. TIn the
regions between stations O and L.E. and stations T.E. and 3, the solu-
tion follows that of the general-momentum theory.

When & propeller annulus is represented by an infinite two-
dimensional cascade, the assumption is made that any blade element is
influenced only by che&idiﬁil_ewus' Radial
variaetions in velocity and Mach number existing in a propeller and the
helical path taken by an actual blade element are ignored. These factors
cause a given blade element to be influenced both by other elements of

the same blade and by elements of other blades at different radii. These
mutual interference effects are left for future study.

The assumption of independence of annulus operation requires that
the mean radius of the flow remain constant throughout. The effects
of a condtant mean radius on power, thrust, and efficiency are
insignificant.

Because. the method of sttack presented is not direct, it 1s neces-
sery to comsider the problem in the inverse manner by obtaining a local
flow pattern about the cascade an& then proceeding t0 a consistent set
of flight conditions.

Two-Dimensional Cascade

In the method of thils paper, the flow conditions about an infinlte
two-dimensional cascade are first determined. The flow patterns are
completely specified by the cescade geometry, by the flow conditions
in the immediste vicinity of the leading edge of the airfoils designated
as refePence values by the subscript R, and by the pressure immediately
behind the frailing edge designated by the subscript R'. The direction

of the TEferenCé'flow with respect to the ‘blade determines the angle of
attack a. -
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In order to simplify study of the flow about an infinite two-
dimensionsl cascade, "the assumption 1is made that the sections are fric-
tionless flat plates of zéro thickness. Because of the difficulties in
handling mixed flow, the analysis is restricted to those cases where
the flow relative to the hlades is everywhere supersonic. :

Based on’ two-dimensional supersonic'fiow'theory, six general types

trated in figures 3 to T, in which expansion fans are indicated by _
dashed lines and shock waves by solid lines. The conditlons under which
these patterns exist are discussed In the following paragraphs. It will
be noted that the type of pattern is intimately related to the axisl
components of Mg (X- or axial Mach number component of the flow at the
blade leading edgé). Observe that the axial component of Mp ise dif-.
ferent from the flight Mach number whenever induced inflow 1s present.

Subsonic, interference-free pattern (fig. 3).- When the X- or
axial Mach number. component of the flow at the blade leading edge (axlal
component of MR) is sufficiently subsonic, 'gll shocks and expansions
from the blade upper surface will pass ahesd of the following blades
and the pressure Immediately behind the trelling edge is for all prectical
purposes equal to the pressure Immediately ahead of the leadling edge. It
will be noted that each blade operates eBSentially independent of other
blades.

Subsonic, shock interference pattern (fig. 4).- For an sxial com-
ponent of MR approaching 1.0, the trailing-edge shock is intercepted
and reflected by the following blade. (See fig. 4.) When this phenom-s
enon occurs all wave patternz originating at the leading edge disappear
because the air approaches the.blade leading edges at zero angle of
attack a. The portion of the blades ahead of the reflected shock
produces no lift; the induced flow required to bring the air into the
"blading at zero angle ‘of attack is generated by the working parts of
the blades behind the reflected shock. A discussion of a mechanism for
mainteining this zero-angle-of-attack condition 1s given in referetice 2.

The strength and location of the trailing-e dge shock is fixed by
the pressure immediately behind the trailing edge.

Sonic, shock-expansion interference patterns (fig. 5).- When the
axial component of Mg is 1.0, the angle of attack .@ may be greater. .

than zero and the patterns of figure 5 are possible. The angle of .attack =

determines the amount of leading-edge expansion that interferes with the
following blades. "If the pressure immediately behind the trailinrs edge_
is assumed . to be sufficiently higher than the pressure at the feading
edge, an interfering shock will exist as shown in figure 5(a). The -
lowest pregsure possible. at the trailing edge for Eh° Pattern of fig-
ure 5(a) occurs when the traeiling-edge shock interBects the trailing
edge of the following blede. The pattern of rigure 5(b) occurs when nc

et
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tralling-edge shock is present and in this case the trailing-edge pres-
sure is equal to the pressure on the upper surfece 6f the blade.

Although the patterns of figuree 5(a) and 5(b) have identical
entering conditions, they could correspond tc very different operating
conditions. The pattern of figure 5(b) represents operation slightly
below sonic flight Maech number with relatively low power. The pattern
of figure 5(g) is typlcal of operation at a lower flight Mach number
with relatively higher power. )

Supersonic, expansion-interference pettern (fig. 6).- When the
axiel component of MR 1is slightly greater than 1.0, the pattern of
figure 6 is possible. The leading—edge .expansion may be completely or
partially reflected by the following blade and will determine the pres-
gsure in the immediate vicinity of the blade treiling edge.

Supersonic, interference-free pattern (fig. 7).- When the axial
component of Mg 1is sufficiently supersonic, all disturbances created
by any blade pass behind all other blades; the pressure in the immediate
vicinity of the trailing edge equals that at the lesding edge. In this
type of flow pattern, all blades operate exactly &8 isolasted airfoils.

To this point in the solution of the general problem the cascade
representation is sufficient to define the local flow pattern, thrust,
and torque force of the corresponding proPeller anmulus. It should be
observed that interference may cause significant changes in the blade
forces. Detailed calculation of the effect of this interference on
thrust, power, and efficiency are left for future study.

Generel Momentumkéheory

With conditions at stations L.E. and T.E. estgblished by the cascade
approach, determination of appropriate uniform flight or free-stream
conditions is made through use of the general-momentum theory. Details
of the complete shock-expansion patterns asre not necessary since &
physicel flow-averaging process is present in which all expansion fans
that escape the blading are accompanied by shocks of the same family and
intensity. Tt is only required that the sir far ahead and behind the
blading reach the same value of free-stream pressure while properly
satisfying the equations of mass flow, energy, and momentum to account
for power and thrust.

It is. & necessary condition that the air approaching the propeller
annulus acquire no net rotation or angular momentum. The average flow
at stations 0 and L.E. must therefore be axial; thus, the angular momentum
of the incoming air relative to the cascade is interpreted as being a
result of the transverse velocity of the cascade. This transverse
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velocity is then directly a measure of the rotational veloclty of the
corresponding propeller anmulus and, in combination with the transverse
component ‘af the forces on the airfoils in _cascade, determines the power _
input.

The average flow at station T.E. will Be'nonagial with an average
tangential velocity component to account for the rotational momentum .
acquired as & resiult of the torque on the bladeés. o

It is interesting to note that the average flow conditions at
stations L.E. and T.E. are exactly comparable to the conditions at
station 1 and station 2, respectively, immediately shead of and immedi-
ately behind, the actuator disk of the conventional mome ntum theory. ’
of particular importance is the fact that, under certain conditions (see_
the cascade patterns of figs. 5(b), 6, and 7}, power is asbsorbed and ’
thrust produced through a pressure drop,_rather than a pressure rise,
from stations. 1 to 2. The changes to the simple momentum theory of
reference 1l'in order to extend ‘it through the sonic speed range are
thereby indiceted.

The manner in which the flow proceeds from station T.E. t6 station 3
far downstream is governed by the average axlial Mach number at .
station T.E.

Whenever the axial Mach number &t station T.E. is subsonic (see
the cascade patterns of figs. 3, 4, and 5(a)), the axial .flow component
behaves as a simple. subsonlc Jet in which the trailing—edge conditione
are influenced by the adjustment process in- the wake. As a result, only
one set of free- stream c0nditions 1s consistent with an assumed cascade
flow pattern.

Whenever the sverage eaxisl Mach number at station T.E. is supersonic
(see the cascade patterns of figs. 5{b), 6, and T7), the flow downstream
can exert no influence on the blades whatsoever and hence may be dis-
regarded in the calculations. The flow, however, must behave as a
supersonic Jet with the accompanying shock and expansion ‘patterna that
allow adjustment to higher downstream pressures. A detailed discussion
of & similar process is given in reference 3, page 172.

Exemination of the general shock and expansion pattern about the
airfolls in cascade reveals that supersonic axial flow at station T.E,
is possible only Wwhen the sxial Mach number at station L.E. 1s sonic
or. greater. Although scnic inflow ia. s necessary condition;, 1t is not
e sufficient condition for the -existence of the supersonic Jet. Over
a limlted range apparently determined by losses such as blade dreg
introduced into the system, sondc 1nflow with a subsonic Jjet may exist

(see fig. 5(a)).
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COMPUTATIONAL FROCEDURE

The mathematical solutions are relatively straighforward. A%
certain points, however, difficulties arise which must be resolved by
reference to the physical aspects of the problem. 1In order to discuss
these situations the mechanics of the method are briefly described.

Tt is necessary to develop solutlions in an lnverse manner; that is,
& local flow pattern about the cascade is first determined and then
gtream conditions consistent with this pattern are determined. The
steps in obtaining solutions are as follows:

A. Determination of initisl conditions.- The cascade geometry is
fixed (see fig. 1) by the propeller annulus under study so that

= b/Q’
Pe = Bx

Values of Mg, Prs PR and, when necessary, either. ag or pR', or

both, are next chosen. These values should be appropriate to the desired
flight and power condltions. TIn order to obtain first approximations
(exact only for supersonic flight) it is suggested that the following
relationships be used: i

‘ Br = ten~1 i%
-
PR = Po
PR = Po

The quantities ap and pR‘ are functions primarily of the power

and a satisfactory first approximstion cannot be given. An exsct solu-
tion satisfying the desired flight and power condltions requires suc-
cessive approximations.
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B. Local flow-field solution.- The flow pattern about the blades
in cascade operating under the assumed initial conditions is calculated
using the Prandtl-Meyer relationships of-reference 4 and the obligque-
shock relationship of reference 5. Second-order effects of entropy
losses across the shocks and shock curvature are neglected, and it is
assumed that shocks and expansions af opposite families intersect without
change in direction. Under these assumptions, it will be found that the
flow pattern about the blades in cascade is consistent.

By use of.this repeating pattern, the blade farces and local pres-
sures, velocities, and denslities may be obtained.

C. Average conditione at station L.E.- Average conditions at
gtetion L.E. may be obtained by means of the following equations

tl: indicates that integrations are taken over one blade spacing at the

blade L.E. |:

for continuity,

for axisl momentum,

L@Wesin2¢ + p)dS = (pmwmesihg% + PLE)S
for transverse .momentum,
\l; pWsin @ cos ¢ ds = (pLEWLEesin bre cos.¢1£98

and, for energy (Energy must be conserved; thus the reference
conditions are taken &s a convenlent sample),

. . 2 . .
_P£+WR2= 7"PLE+WLE
y -1lpPg - 2. 7 - 1P 2 -
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The preceding equations when solved simultaheously lead to two
sets of average conditions corresponding to either a high or a low value
of prp- In every case, the high-pressure solution is selected.  The

low-pressure solution, corresponding to a supersonic axial Mach number,
requires a physically impossible throat ahead of the blades.

The average axial veloclty of the slipstream et station L.E. &nd
the transverse velocity of the cascade may be determined by

CVLE)E =_WEE sin:gLE

U = W cos fp

the rotational speed of the corresponding propeller annulus in revolu-
tions per second becomes :

= -9
T 2rr

and the average axial Mach number at station L.E. is

D. Average conditions at station T.E.- Average conditions at
station T.E. may be determined in a manner similar to that used in
finding the conditions et ‘station L.E. A simpler method, however, is
as follows: ' ’ '

" For continuity,

(QTEWTE gin ¢TE)S = myg
for axisl momentum,
B%TEW- 2sin ¢ ) - (QLEWEEESin2¢LE + PL%X 8 = F cos B,
Sy
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for transverse momentum,

("LEWLE?S.iT}.QIE cos Prg - PrgWgesin gop cos ¢TE)S = F sin B¢

and, for energy,

-+

. 2
7y P, ¥mg” .y PR Wg°
- 1 Py 2 7 -1lpg 2

As before, when the preceding equations are solved simultenecusly
both 2 high- and a low-pressure solution are mathematically possible.
The choice of solutlon is determined by examination of the flow pattern.
When a shock exists in the blading, the high-pressure solution is selected
and, when no shock exists, the low-pressure solutlon applies.

The exial and transverse components of the average slipstream
velocity at station T.E. are now found to bhe

(Vee)a
(¥re)

aend the average axial Mach pnumber &t station T.E. is
_(Vmm)a

(Mre) ,, - \/TP_TE

The torque force per hlade per unit radiel distance of the propeller
ennulus is now

WTE sin ¢TE

U - Wgg cos Gg

% = m(vTﬁ)t =.F sin.Bx-
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The power pér unit mass flow is -

Thrust per unit mass flow is-equal to

Hid

T _ .
E— cos Bx

E. Determination of flight condltions.- For the subsonic average
exial Mach number at station T.E., the following relstlonships must be
simultaneously satisfied:

PO = PS
PIE _ Po
Pre _P3
7 7
PR °3
\'E 2 2
P,_ 2 PR . (,LE)a _ 7 Ei + V3
m Y -1 PIm 2 _ ¥ - 1 p3 2

'

2 (1 - 79

V3, Ese - -(v3t)ﬂl/2

and, with the assumption of constant mean flow radius

where

V35 = (=)
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For the supersonic average axisl Mach number.at station T.E., the
conditions are as follows:’

For supersonic Mach number at station L.E.,

Po = Piy
Vo = ViE

and, for sonic axial Mach number at station L.E., some freedom in the
choice of- free-stream pressure exists. The Jower 1imit of free-stream
pressure 18 .pyp, corresponding to sonic flight Mach number. The upper

1imit is determined by the condition that it must not be too high to
prevent the exit flow. Thus, if the air at the trailing edges must
adjust to free-stream pressure directly (under the essumption of inde-
pendence of annulus operation), this upper limit 1s determined by the
pressure rise through a pormal shock &t the trailing edges.

After py~ has been selected, it follows directly that

Do 1/7
Po = Prm EEE . .

‘and e . o T

A

For all these flight conditions the efficiency s’

T To/m
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REPRESENTATIVE SOLUTIONS

Three representative solutions sre presented in table I. They
illustrate, respectively, subsonic forward speed with subsonic inflow,
subsonic forward speed with sonic inflow, and supérsonic forward speed.

No attempt has been made to connect the solutions presented to any
specific propeller, although it is believed that the conditions inves-
tigated lie within the range of interest for supersonic propellers. The
solutions are presented primarily to show that operation throughout the
Mach number range may be studied.

When forward speed and inflow velocity are both subsonic, the
varistions in Mach number, velocity, pressure, and density follow the
general trends established by the simple axisl-momentum theory of refer-
ence 1. A specific case solved by both methods is presented in table IT
for a power disk loading coefficient P of 0.22h and a flight Mach
number of 0.70.

The minor differences present are due lergely to consideration in
the present theory of drag due to 1ift assoclated with supersonic air-
folls. Losses assoclated with this drag due to 1ift that were not
present in the theory of reference 1 cause the reduction in efficiency
from 0.97h to 0.883.

With subsonic forward speed and sonic inflow the average Mach number
at station T.E. may be subsonic or supersonic depending on the power. In
the second example of table I, the forward Mach number is high enough
and the power input 1s low enough so that supersonic conditions prevail
at station T.E.

When the forward speed is supersonic, as in the third example of
table I, the conditions at station T.E. are then supersonic.

It is worth noting that, in each case presented, operation is
relstively efficient.

CONCLUDING REMARKS

The cascade—genersl-momentum theory herein outlined seems adequate
in describing the general operation of a supersonic propeller annulus
throughout the flight Mech number range. Although some problems con-
cerned with the flow detalls in certeln transition regions remain, they
appear to be amenable to further analysis.
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Effects such as those due to thickness, shock interferemnce, and

viscosity may be handled if the local flow péttern 1s determinable since -

g local flow pdattern i1s the only requirement for a solution. The inves-
tigation of such factdors as tip and shank effects and radial gradients
that exist in an actual .propeller but are not considered in the present
theory will require considerable further development.

In its present form, the solution to any particular problem usually
involves successive approximatlon. The development of & more direct.
method is nepeded. Even in its present form, however, the method should
be .useful in establishing the general trends of propeller 0peration )
throughout the transonlic and supersonic flight regiona.

Langley Aercnautical Laboratory,
Natlonal Advisory Commitiee for Aeronautics,
Langley Field, Vs.
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TABLE I.

THREE REPRESENTATIVE SOLUTIONS TO THE CASCADE-—GENERAL-MOMEXTUM THECRY. .

FOR THE OPERATION OF A SUPERSONIC PROPELLER ANNULUS

" Assumad Imitial Conditions

I Iz IIT
Subsonic forward speed, Subaonis forward apeed, Supersanic forward
subsonic inflow sonic inflow speed
PR 391.8 373.8 391.8
Pps unnecessary for these cases
fp +000586 000566 - 000586
¥ 1.330 1.58 1.649
Bo 3h.75 L3.30 hs.70 -
ey 3.00 2.05 3.00
s 6.667 6.667 6.667
Caloulated Average Flow Conditions Throughout Slipstream
Station O Leading edge Trailing edge 3
Sclution I b
3 38L.L 369.3 399.2 38k}
- v 679.0 716.9 . 6719.1 715.5
p .000578 .000562 000593 000577
.4 % T «Th7 «7T00 il
Solution IT
P 376.6 373.8  ° 338.6 376.6
v 9562 961,.2 1031.5 —
P «000569 .009566 +000528 ——
¥ «59h 1,000 1.088 Subsonie
Solution IIT
P 391.8 391.8 370.2 3%1.8
v 1160.0 1160.0 12103 —
P « 000586 .000586 « 000562 —
.4 1.200 1.200 1,260 Supersonic
Resultant Opersting Conditions
I o hand
N e .75 43.30 h9.7C
8 31.55 .17 u6.70
P?S 20.20 5.87 27.15
n .885 .926 300 .
" Local cascads 4 o
. flow pattern | 18- 3 | fig. 5(b) [ fig. 7 -

17



TABLE II

COMPARISON OF SOLUTION OBTATNED BY METHOD OF REFERENCE 1 AKD PRESENT THEORY

(SOLUTION I, TABIE I) FOR A POWER-DISK LOADING COEFFICIENT P,

OF :0.224 AND A FLIGET MACH NUMBER OF 0.70

Station 0] 1 or L.E. 2 or T.E. 3

Method Reference 1| Present | Reference 1 Presen't' Reference 1 Preaent_ Reference 1 | Present
Mach number ratio, M/Mg|  1.000 1.000 1.069 1,061 0.992 0.994 1.055 1.053
Veloclty .ratio, V/Vg 1.000 1.000 1.065 1.056 0.998 1.000 1.058 1.054
Pressure ratio, p/pg 1.000 1.000 0.956 0.961 1.0k2 1.039 1.000 1.000
Density ratic, p/Pg 1.000 1.000 0.969 0.972 1,030 1,026 1.000 0.998

Method Reference 1 Present

1 0.97% 0.885

P/8, hp/ag £t 20.65 20.20 A

gt
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Figure 1.- Generation of a two-dimensional cascade t0 represent
8 propelier annulus.
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Fignt diracticn, I
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Direction of rotation, Y

Flgure 3.- Flow sbout an infinlte two-dimensional supersonic cascade
where the axial or X-component of Mach number of the flow at the
blade leading edge is sufficiently subsonlc so that no lnterference
exists between the blading.




Flight direction, 1

Figure 4.- Flow about an infinite two-dimensional supersonic cascade
where the asxial or X-component of Mach number of the flow at the
blade leading edge approaches 1 and shock interference exlsts
between the bleding. ’
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(a) Pettern when pressure immediately behind the trailing
edge 1s higher than the pressure at the leading edge.

' (b) Pattern for pressure immedistely behind the trailing edge
equal to pressure on the upper surface of the blade.

Figure 5.~ Flow sbout an.infinite two-dimensional supersonic cascade
where the axlal or X-component of Mach number of the flow at the
blade lesding edge is 1 and shock-expansion Interference exlsts

between the blading.
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Figure 6,- Flov about an infinite two-dimensionel supersonic cescade
where the axial or X-component of Mach mmber of the flow at the
blade leading edge 1s supersonic and expansion interference exlsts
between the blading.
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Flight dirsction, X

——r
Dirention of rataticn, ¥

Figure T.- Flow ebout an infinite two-dimensional superscnic cascade
vwhere the axisl or X-component of Mach number of the flow at the
blade leeding edge 1ls supersonic and no interference exigts between
the bladlng.
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